

3.3 Quadratic Equations

With your group come up with as many ways to solve a quadratic equation, $ax^2 + bx + c = 0$ as you can.

Zero Product Property

If a and b are complex numbers, and ab=0 then either a=0 or b=0, or both.

$$(x+8)(x-7)=0$$

Working backwards, what would the values of a,b, and c be for x=2,9?

Ex. 1

Solve $x^2 + 9x + 8 = -12$ by factoring.

Square roots

Ex. 2

Solve algebraically and check using your calculator

(a)
$$x^2 = 16$$

(b)
$$3x^2 = -27$$

(b)
$$3x^2 = -27$$
 (c) $2(x-1)^2 = 16$

Completing the square:

$$ax^2 + bx = c$$

Solve
$$x^2 - 6x + 7 = 0$$

Solve
$$3x^2 - 6x + 4 = 0$$

Ex. 5
Solve
$$8x^2 + 2x - 3 = 0$$

The Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The discriminant of a quadratic equation b^2 - 4ac determines the number of real solutions of a quadratic equation.

$$b^2 - 4ac > 0$$

$$b^2 - 4ac = 0$$

$$b^2 - 4ac < 0$$

Ex. 6

Determine how many solutions there are then find all solutions of $2x^2 - x + 4 = 0$

Solving Quadratic Inequalities

$$ax^2+bx+c < 0$$
 or $>$, \leq , \geq

<u>Ex. 7</u>

Solve
$$x^2 + 7x + 12 < 0$$

Ex. 8

Solve
$$2x^2 \ge -5x + 12 < 0$$

<u>Ex. 9</u>

Solve

(a)
$$SA = 1d^2/4$$
 for d

(b)
$$rt^2$$
-st - k=0 for t